找回密码
 立即注册
搜索
查看: 1002|回复: 0
打印 上一主题 下一主题
收起左侧

[探索频道] 超材料:我们另类的超级创造

[复制链接]

青铜会员 - 等级≥州判

跳转到指定楼层
楼主
发表于 2013-6-7 11:23 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
基于新型人工电磁材料的电磁黑洞

“你只看到我的技术突破,却没看到我的神秘莫测;你有你的折射规则,我有我的介质选择;你惊诧于电磁黑洞光子晶体,我告诉你慢波结构和隐身衣;你曾忽视Veselago的疑猜,我决定材料科学的将来;你可以轻视我们的年轻,我们会证明这是谁的时代。创新,是注定孤独的旅行,路上少不了汗水和障碍。但,那又怎样?哪怕经费高昂,也要直指希望。我是超材料,我为自己代言。”
“年度十大突破”“年度十大进展”……超材料频频亮相于各个科技颁奖礼。虽被提出与发展是在近几十年,但其必将凭借神奇的能力,带我们走向深远的未来。
什么是超材料?
中学时老师告诉我们,当一束光从空气斜射入水中,入射光与折射光应该在法线两侧。那么,是否存在这样一种介质,当光入射其中,入射光与折射光位居法线同侧?
1968年,前苏联理论物理学家菲斯拉格(Veselago)发现,介电常数和磁导率都为负值物质的电磁学性质,与常规材料不同,从而在理论上预测了上述“反常”现象。超材料的概念便源于此。
Metamaterial,其中拉丁语词根“meta-”表示“超出、另类”等含义,因此一般文献中给出超材料的定义是“具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。”但实际上,到目前超材料还没有统一定义。那超材料到底是什么?我们从其特征就能做出判断:
具有新奇人工结构的复合材料;具有常规(或传统)材料不具备的超常物理性质;超常物理性质主要由新奇的人工结构决定;新奇的人工结构包括单元结构(人工原子和人工分子)和单元结构集合而成的复合结构两个层次。
隐身衣是近年来出镜率最高的超材料应用,电磁超材料是迄今为止超材料技术研究最为集中的方向,典型的超材料还包括左手材料、光子晶体和非正定介质等,听起来都非常“科幻”。
由于上世纪60年代没有实验验证,加之时值功能材料处于发展初期,立足于原子、分子层次结构设计与调控的传统材料设计思想,在新型功能材料研发中仍有强大的生命力,因此,人们对菲斯拉格的发现未予以高度重视。
随着传统材料设计思想的局限性日渐暴露,显著提高材料综合性能的难度越来越大,材料高性能化对稀缺资源的依赖程度越来越高,发展超越常规材料性能极限的材料设计新思路,成为新材料研发的重要任务。菲斯拉格的发现重新回到人们视线。
超材料是材料设计思想上的重大创新,对新一代信息技术、国防工业、新能源技术、微细加工技术等领域可能产生的深远影响,发达国家的政府、学术界、产业界对超材料技术的研发给予高度重视,制定了相关计划,投入了大量人力和物力。
从负折射率到电磁黑洞
2001年,美国加州大学圣迭戈分校的史密斯教授等人在实验室制造出世界上第一个负折射率的超材料样品,并实验证明了负折射现象与负折射率。翌年,美国加州大学Itoh教授和加拿大多伦多大学Eleftheriades教授领导的研究组几乎同时提出一种基于周期性LC网络的实现超材料的新方法。
2002年底,麻省理工学院的孔金瓯教授也从理论上证明了“左手”材料存在的合理性,并称之为“导向介质”,他预言了这种人工材料在高指向性的天线、聚焦微波波束、“完美透镜”、电磁波隐身等方面的应用前景。2006年,史密斯教授及其在杜克大学的科研小组设计、制造了著名的“隐身大衣”,并成功地进行了实验证明。2009年又出现了宽频带的隐身衣。2010年科学家发现了电磁黑洞。
光子晶体、左手材料、隐身衣等超材料研究成果被美国《科学》杂志先后于2000年、2003年、2006年选为年度10项重大进展之一。《Materials Today》杂志在2008年将超材料评为材料科学50年中的10项重要突破之一。2010年,《科学》杂志又将超材料列入本世纪前十年的10项重要科学进展之一。
目前,美国国防部专门启动了关于超材料的研究计划,美国最大的6家半导体公司英特尔、AMD和IBM等也成立了联合基金资助这方面的研究。欧盟组织了50多位相关领域最顶尖的科学家聚焦这一领域的研究,并给予高额的经费支持。日本在经济低迷之际出台了一项研究计划,支持了至少有两个关于超材料技术的研究项目,每个项目约为30亿日元。
重大创新将产生重大效益
近10年来,超材料研究之所以能引起全世界的高度关注,源自于超材料所体现的材料设计思想的重大创新,以及这一创新将产生的重大效益。
首先,通过材料结构的创新设计,实现全新的物理现象,产生具有重大军用、民用价值的新技术、新材料,促进甚至引领新兴产业发展;然后利用超材料设计思想,提升传统材料性能,突破稀缺资源瓶颈,实现传统材料产业的技术升级和结构调整。
电磁超材料实现,使我们继利用半导体自由调控电子传输之后,首次具备了自由调控电磁波的能力。这对未来的新一代通信、光电子/微电子、先进制造产业以及隐身、探测、核磁、强磁场、太阳能及微波能利用等技术将产生深远的影响。
隐身衣是一种以开口谐振环为单元结构、非均匀方式排列成圆环结构的超材料,其应用大家不言自明。
“电磁黑洞”是一种能够全向捕捉电磁波的电磁超材料,能引导电磁波在壳层内螺旋式地行进,直至被有耗内核完全吸收,使基于引力场的黑洞很难在实验室里模拟和验证的难题迎刃而解。这一现象的发现,不仅将为太阳能利用技术增加新的途径,产生全新的光热太阳能电池,还能应用于红外热成像技术,大幅度提高红外信号探测能力,因而在飞机、导弹、舰船、卫星等方面获得广泛的应用。
慢波结构是一种能使电磁波减速甚至停止的电磁超材料,不仅可应用于太阳能发电、高分辨红外热成像技术,还可应用于光缓存和深亚波长光波导,极大增强非线性效应,促进光电技术的发展。
超材料透镜是一种可实现高定向性辐射的电磁超材料,可用于制造先进的透镜天线、新型龙伯透镜、小型化相控阵天线、超分辨率成像系统等。
此外,如将超材料设计思想应用于常规材料,可在显著提高材料综合性能的同时,大幅度减少稀缺元素
用量,为提升传统材料产业提供了新的技术途径。例如,常规软磁与硬磁材料按特定的空间排布方式复合、普通碳钢与高硬度陶瓷或其他高硬度材料按特定的空间排布方式复合,可在不使用钕、铬、镍等稀缺金属的情况下,使磁性材料的磁能级成倍提高,而耐磨钢的耐磨性与强韧性矛盾得到很好解决。
我国超材料技术发展现状
我国政府对超材料技术予以了高度关注,分别在863计划、973计划、国家自然科学基金等科技计划中予以立项支持。在电磁黑洞、超材料隐身技术介质基超材料,以及声波负折射等基础研究方面,已取得原创性成果。
浙江大学在光波和超低频超材料领域取得了一系列有影响的成果,发展出了基于慢波来设计超薄、宽吸收角度的完美吸波材料,提出了超材料在成像、隐身、磁共振成像和静磁场增强方面的应用。
东南大学研究了均匀和非均匀超材料对电磁波的调控作用,提出了电磁黑洞和新型超材料隐身器件,发展出了雷达幻觉器件、远场超分辨率成像透镜、新型天线罩、极化转换器等新型超材料器件。
清华大学研究介质基和本征型超材料,提出了通过超材料与自然材料融合构造新型功能材料思想,发展出了基于铁磁共振、极性晶格共振、稀土离子电磁偶极跃迁以及Mie谐振的超常电磁介质超材料。
深圳光启研究院则在国际上率先推进了超材料产业化,研发出超材料平板式卫星天线,在22个省市进行了测试,并在北京、天津等地得到了实际应用。(稿件素材由西苑沙龙会议提供)
———— ■ 专家视点 ————
周少雄 中国钢研科技集团有限公司副总工程师:
超材料的设计思想和方法很有可能成为发掘材料新功能、引领产业新方向,提高材料综合性能、突破稀缺资源瓶颈的有力手段。应进一步明确在国家层面大力发展超材料技术的必要性,凝练发展重点,选择合理技术路线,制定符合超材料技术发展趋势、并与我国国情相适应的超材料技术发展战略。
刘若鹏 深圳光启高等理工研究院院长、创始人:工业级超材料技术通过对电磁波的控制实现所需求的可工程化、可量产化,进而形成一个包含设计、工艺、封装和测试在内的完整工业体系。
工业级超材料技术在不同的应用中对原材料有不同的要求:如果对于强度有特别高的要求,通常会采用陶瓷基的材料;如果满足强度的同时希望密度尽可能小,通常会采用高性能的树脂材料。
何赛灵 浙江大学光及电磁波研究中心特聘教授、浙大光及电磁波研究中心创办人:随着超材料研究的进展,一些更激动人心、更具应用前景的新物理现象也逐渐出现在人们面前,如慢波、紫外磁响应、超宽带电磁吸收、静磁场增强、MRI深处成像、热场调控等。这些新的发现可革命性地突破现有原理和技术限制,开拓出崭新的应用前景。
崔铁军 东南大学无线电工程系教授、教育部“长江学者奖励计划”特聘教授:超材料并不是万能的,不能期待超材料能够解决所有问题,应该在一些即具有创新性、又具有可行性、且对我国的国防和国民经济能产生重大影响的重点方向予以支持。
周济 清华大学材料学院教授,教育部“长江学者奖励计划”特聘教授:超材料与材料的融合作为新材料的重要生长点,既具有重要的理论价值,又具有广阔的应用前景,是一个值得重视的新方向。
插件设计:zasq.net
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|小黑屋| ( Q群816270601 )

GMT+8, 2024-11-28 01:28 , Processed in 1.439920 second(s), 45 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表